metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[[[μ_3 -N'-(carboxymethyl)ethylenediamine-N,N,N'-triacetato]dysprosium(III)] trihydrate]

Xiaomei Zhuang, Qingping Long and Jun Wang*

Zhongshan Polytechnic, Zhongshan, Guangdong 528404, People's Republic of China

Correspondence e-mail: wangjun7203@126.com

Received 9 October 2010; accepted 15 October 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; *R* factor = 0.024; *wR* factor = 0.061; data-to-parameter ratio = 14.7.

In the title coordination polymer, $\{[Dy(C_{10}H_{13}N_2O_8)]\cdot 3H_2O\}_n$, the dysprosium(III) ion is coordinated by two N atoms and six O atoms from three different (carboxymethyl)ethylenediaminetriacetate ligands in a distorted square-antiprismatic geometry. The ligands connect the metal atoms, forming layers parallel to the *ab* plane. $O-H\cdots O$ hydrogen bonds further assemble adjacent layers into a three-dimensional supramolecular network.

Related literature

For general background to the topologies and potential applications of metal coordination polymers, see: Benelli & Gatteschi (2002). For related structures, see: Wang *et al.* (2007); You & Ng (2007); Sakagami *et al.* (1999); Templeton *et al.* (1985); Vikram & Sivasankar (2008).

Experimental

Crystal data $[Dy(C_{10}H_{13}N_2O_8)]\cdot 3H_2O$ $M_r = 505.77$

Orthorhombic, *Pbca* a = 13.3835 (5) Å

b = 13.0127 (4) Å
c = 18.6943 (7) Å
V = 3255.7 (2) Å ³
Z = 8

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.389, T_{\max} = 0.488$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.024$ 217 parameters $wR(F^2) = 0.061$ H-atom parameters constrainedS = 1.07 $\Delta \rho_{max} = 0.74$ e Å $^{-3}$ 3192 reflections $\Delta \rho_{min} = -0.69$ e Å $^{-3}$

Mo $K\alpha$ radiation $\mu = 4.65 \text{ mm}^{-1}$

 $0.25 \times 0.19 \times 0.18 \text{ mm}$

19825 measured reflections

3192 independent reflections 2230 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.034$

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccc} 0.1 - H1 \cdots 03^{i} & 0.82 & 1.69 & 2.504 \ (5) & 172 \\ 0.1 W - H2W \cdots 06^{ii} & 0.85 & 2.17 & 2.920 \ (5) & 148 \\ 0.1 W - H1W \cdots 03^{iii} & 0.84 & 2.10 & 2.925 \ (5) & 165 \\ 0.2 W - H3W \cdots 0.3 W^{iv} & 0.83 & 2.04 & 2.813 \ (6) & 154 \\ 0.2 W - H4W \cdots 0.1 W^{v} & 0.84 & 2.09 & 2.844 \ (6) & 150 \end{array}$	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O1−H1···O3 ⁱ	0.82	1.69	2.504 (5)	172
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O1W - H2W \cdots O6^{ii}$	0.85	2.17	2.920 (5)	148
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$O1W - H1W \cdots O3^{iii}$	0.84	2.10	2.925 (5)	165
$O2W - H4W \cdots O1W^{v}$ 0.84 2.09 2.844 (6) 150	$O2W - H3W \cdots O3W^{iv}$	0.83	2.04	2.813 (6)	154
	$O2W - H4W \cdots O1W^{v}$	0.84	2.09	2.844 (6)	150
$O3W - H6W \cdots O2^{v_1}$ 0.85 2.56 3.141 (5) 127	$O3W - H6W \cdots O2^{vi}$	0.85	2.56	3.141 (5)	127

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) -x + 1, -y + 1, -z + 1; (iv) $x + \frac{1}{2}, -y + \frac{3}{2}, -z$; (v) $-x + 2, y + \frac{1}{2}, -z + \frac{1}{2}$; (vi) $-x + \frac{1}{2}, y + \frac{1}{2}, z$.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors acknowledge Zhongshan Polytechnic for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2501).

References

- Benelli, C. & Gatteschi, D. (2002). Chem. Rev. 102, 2369-2388.
- Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc, Madison, Wisconsin, USA.
- Sakagami, N., Yamada, Y., Konno, T. & Okamoto, K. (1999). Inorg. Chim. Acta, 288, 7–16.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Templeton, L. K., Templeton, D. H. & Zalkin, A. (1985). Acta Cryst. C41, 355– 358.
- Vikram, L. & Sivasankar, B. N. (2008). Ind. J. Chem. Sect. A, 47, 25-31.
- Wang, J., Gao, G., Zhang, Z., Zhang, X. & Wang, Y. (2007). J. Coord. Chem. 60, 2221–2241.
- You, X.-L. & Ng, S. W. (2007). Acta Cryst. E63, m1819.

Acta Cryst. (2010). E66, m1436 [doi:10.1107/S1600536810041784]

Poly[[[#3-N'-(carboxymethyl)ethylenediamine-N,N,N'-triacetato]dysprosium(III)] trihydrate]

X. Zhuang, Q. Long and J. Wang

Comment

The design and construction of metal coordination polymers based on metal ions and multifunctional bridging ligands is of great research interest due to their intriguing topologies and potential applications as functional materials (Benelli & Gatteschi, 2002). The flexible ethylenediaminetetraacetato ligand possessing variable coordination modes to bind to metal ions, provides unique opportunities for the construction of unusual networks. Recently, some mono- and polynuclear Dy complexes of this ligand have been reported (Wang *et al.*, 2007; You & Ng, 2007; Sakagami *et al.*, 1999; Templeton *et al.*, 1985; Vikram & Sivasankar, 2008). Herein, we report the structure of the new polynuclear dysprosium complex, $\{[Dy(C_{10}H_9N_2O_8)].3H_2O\}_n$.

In the structure of the title compound, the dysprosium(III) metal displays a distorted square antiprism geometry provided by two N atoms from one (carboxymethyl)ethylenediaminetriacetato ligand (HEDTA) and six O atoms from three different HEDTA ligands (Fig. 1). The ligands connect the dysprosium centres to form layers parallel to the *ab* plane. O—H···O hydrogen bonds involving the interstitial water molecules assemble adjacent layers to construct a three-dimensional supra-molecular network (Table 1; Fig. 2).

Experimental

A mixture of Dy_2O_3 (0.189 g, 0.5 mmol), ethylenediaminetetraacetic acid (0.146 g, 0.5 mmol), and H_2O (10 mL) was sealed in a 20 mL Teflon-lined reactor, which was heated in an oven to 423 K for 36 h and then cooled to room temperature at a rate of 5 K h⁻¹. Colourless crystals were obtained in a yield of 46% based on Dy.

Refinement

All water H atoms were tentatively located in difference density Fourier maps and were refined with O–H distance restraints of 0.85 (2) Å and with $U_{iso}(H) = 1.5 U_{eq}(O)$. In the last stage of refinement, they were treated as riding on their parent O atoms. All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.97 Å, and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The asymmetric unit of the title compound, with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (ii) 1/2-x, -1/2+y, z; (iii) 1/2+x, y, 1/2-z.

Fig. 2. Crystal packing of the title compound viewed along the b axis. Intermolecular hydrogen bonds are shown as dashed lines.

Poly[[[µ₃-N'-(carboxymethyl)ethylenediamine- N,N,N'-triacetato]dysprosium(III)] trihydrate]

Crystal data

$[Dy(C_{10}H_{13}N_2O_8)]$ ·3H ₂ O	F(000) = 1976
$M_r = 505.77$	$D_{\rm x} = 2.064 {\rm Mg} {\rm m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 4800 reflections
a = 13.3835 (5) Å	$\theta = 1.4 - 28.0^{\circ}$
b = 13.0127 (4) Å	$\mu = 4.65 \text{ mm}^{-1}$
c = 18.6943 (7) Å	T = 296 K
$V = 3255.7 (2) \text{ Å}^3$	Block, colourless
Z = 8	$0.25\times0.19\times0.18~mm$

Data collection

Bruker APEXII area-detector diffractometer	3192 independent reflections
Radiation source: fine-focus sealed tube	2230 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.034$
φ and ω scan	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2008)	$h = -13 \rightarrow 16$
$T_{\min} = 0.389, T_{\max} = 0.488$	$k = -16 \rightarrow 16$
19825 measured reflections	$l = -22 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.061$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_0^2) + (0.0239P)^2 + 3.1993P]$ where $P = (F_0^2 + 2F_c^2)/3$
3192 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
217 parameters	$\Delta \rho_{\rm max} = 0.74 \text{ e } \text{\AA}^{-3}$

0 restraints

$$\Delta \rho_{min} = -0.69 \text{ e } \text{\AA}^{-3}$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Dy1	0.195820 (13)	0.546220 (11)	0.248589 (10)	0.01538 (8)
N1	0.1266 (2)	0.6990 (2)	0.32682 (16)	0.0170 (7)
N2	0.0619 (2)	0.6517 (2)	0.17784 (16)	0.0167 (7)
C4	0.1889 (3)	0.5806 (3)	0.4196 (2)	0.0220 (10)
C3	0.1109 (3)	0.6609 (3)	0.4002 (2)	0.0219 (9)
H3A	0.0448	0.6310	0.4040	0.026*
H3B	0.1149	0.7178	0.4335	0.026*
C2	0.1622 (3)	0.5832 (3)	0.0792 (2)	0.0245 (10)
C1	0.0980 (3)	0.6704 (3)	0.1040 (2)	0.0231 (10)
H1A	0.1362	0.7337	0.1027	0.028*
H1B	0.0414	0.6779	0.0721	0.028*
C6	0.0396 (3)	0.7507 (3)	0.2145 (2)	0.0187 (9)
H6A	-0.0229	0.7778	0.1964	0.022*
H6B	0.0918	0.7998	0.2033	0.022*
C5	0.0323 (3)	0.7387 (3)	0.2951 (2)	0.0195 (9)
H5A	0.0166	0.8048	0.3163	0.023*
H5B	-0.0217	0.6918	0.3064	0.023*
02	0.1990 (2)	0.5221 (2)	0.12204 (15)	0.0305 (8)
O4	0.2355 (2)	0.5364 (2)	0.36996 (14)	0.0258 (7)
03	0.2014 (2)	0.5610 (2)	0.48468 (15)	0.0375 (8)
01	0.1763 (3)	0.5794 (3)	0.01143 (16)	0.0444 (9)
H1	0.2118	0.5300	0.0018	0.067*
C8	0.2652 (3)	0.7845 (3)	0.2596 (2)	0.0187 (9)
C7	0.2041 (3)	0.7799 (3)	0.3277 (2)	0.0204 (9)
H7A	0.2487	0.7677	0.3677	0.024*
H7B	0.1722	0.8459	0.3352	0.024*
05	0.2750 (2)	0.70278 (19)	0.22414 (15)	0.0228 (6)
C10	-0.0465 (3)	0.5264 (3)	0.2434 (2)	0.0180 (9)
C9	-0.0296 (3)	0.5873 (3)	0.1748 (2)	0.0219 (9)
H9A	-0.0243	0.5399	0.1349	0.026*
H9B	-0.0870	0.6312	0.1663	0.026*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

O6	0.03078 (19)	0.4997 (2)	0.27769 (15)	0.0218 (6)
07	0.30708 (18)	0.86679 (19)	0.24311 (14)	0.0243 (7)
08	-0.13277 (19)	0.50137 (19)	0.26058 (14)	0.0216 (6)
O1W	0.9746 (4)	0.4386 (3)	0.4225 (2)	0.0840 (14)
H2W	0.9668	0.4475	0.3780	0.126*
H1W	0.9200	0.4478	0.4441	0.126*
O2W	0.8853 (3)	0.7777 (3)	0.0541 (2)	0.0798 (13)
H3W	0.8606	0.7769	0.0133	0.096*
H4W	0.9063	0.8364	0.0649	0.096*
O3W	0.3282 (4)	0.7889 (3)	0.0831 (2)	0.0966 (16)
H6W	0.2814	0.8319	0.0909	0.145*
H5W	0.3833	0.8247	0.0785	0.145*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Dy1	0.01199 (11)	0.01112 (10)	0.02303 (12)	0.00043 (6)	0.00005 (9)	-0.00001 (9)
N1	0.0157 (17)	0.0155 (15)	0.0197 (18)	0.0009 (14)	-0.0011 (14)	0.0026 (14)
N2	0.0193 (18)	0.0153 (16)	0.0156 (17)	0.0010 (14)	0.0044 (14)	0.0002 (14)
C4	0.023 (2)	0.020 (2)	0.022 (2)	0.0000 (18)	-0.0041 (19)	0.0008 (18)
C3	0.025 (2)	0.025 (2)	0.016 (2)	-0.0007 (19)	0.0048 (18)	-0.0006 (18)
C2	0.024 (2)	0.029 (2)	0.020 (2)	0.002 (2)	0.005 (2)	-0.0044 (19)
C1	0.024 (2)	0.023 (2)	0.022 (2)	0.0052 (19)	0.0024 (18)	0.0024 (18)
C6	0.015 (2)	0.0148 (19)	0.027 (2)	0.0073 (17)	-0.0028 (18)	0.0023 (17)
C5	0.017 (2)	0.0167 (19)	0.025 (2)	0.0043 (17)	0.0026 (18)	-0.0020 (17)
O2	0.042 (2)	0.0291 (16)	0.0204 (16)	0.0182 (14)	0.0014 (14)	-0.0032 (13)
O4	0.0253 (17)	0.0287 (16)	0.0233 (16)	0.0092 (14)	-0.0022 (14)	0.0028 (13)
O3	0.046 (2)	0.048 (2)	0.0180 (16)	0.0207 (16)	-0.0026 (14)	0.0043 (15)
01	0.059 (2)	0.048 (2)	0.0260 (18)	0.0262 (18)	0.0108 (16)	0.0033 (16)
C8	0.0086 (18)	0.0125 (18)	0.035 (3)	0.0022 (15)	-0.0059 (18)	0.0031 (18)
C7	0.023 (2)	0.0147 (19)	0.023 (2)	-0.0004 (17)	-0.0021 (18)	-0.0029 (17)
O5	0.0212 (15)	0.0139 (14)	0.0332 (16)	-0.0004 (12)	0.0088 (13)	-0.0013 (12)
C10	0.017 (2)	0.0103 (16)	0.026 (2)	0.0009 (15)	-0.0007 (19)	-0.0050 (17)
C9	0.017 (2)	0.025 (2)	0.023 (2)	-0.0019 (18)	-0.0044 (18)	0.0021 (18)
O6	0.0114 (14)	0.0188 (13)	0.0352 (16)	0.0000 (12)	-0.0021 (13)	0.0088 (13)
O7	0.0177 (15)	0.0116 (12)	0.0437 (18)	-0.0019 (11)	0.0034 (14)	0.0005 (14)
08	0.0077 (14)	0.0187 (12)	0.0383 (18)	-0.0011 (11)	0.0011 (12)	0.0039 (13)
O1W	0.109 (4)	0.097 (3)	0.046 (3)	-0.014 (3)	0.024 (3)	0.002 (2)
O2W	0.062 (3)	0.113 (4)	0.064 (3)	0.018 (3)	-0.004 (2)	0.017 (3)
O3W	0.127 (5)	0.084 (3)	0.079 (3)	0.007 (3)	0.011 (3)	-0.003 (3)

Geometric parameter	rs (Å, °)
---------------------	-----------

Dy1—O4	2.334 (3)	C6—C5	1.518 (6)
Dy1—O7 ⁱ	2.337 (3)	C6—H6A	0.9700
Dy1—O5	2.342 (3)	С6—Н6В	0.9700
Dy1—O6	2.354 (3)	С5—Н5А	0.9700
Dy1—O8 ⁱⁱ	2.373 (3)	C5—H5B	0.9700

Dy1—O2	2.387 (3)	O1—H1	0.8200
Dy1—N2	2.617 (3)	C8—O7	1.248 (4)
Dy1—N1	2.636 (3)	C8—O5	1.260 (4)
N1—C3	1.473 (4)	C8—C7	1.513 (5)
N1—C7	1.477 (5)	С7—Н7А	0.9700
N1—C5	1.487 (5)	С7—Н7В	0.9700
N2—C1	1.482 (5)	C10—O8	1.243 (4)
N2—C9	1.485 (5)	C10—O6	1.265 (4)
N2—C6	1.488 (5)	C10—C9	1.524 (5)
C4—O4	1.257 (5)	С9—Н9А	0.9700
C4—O3	1.254 (5)	С9—Н9В	0.9700
C4—C3	1.521 (5)	O7—Dy1 ⁱⁱⁱ	2.337 (3)
С3—НЗА	0.9700	O8—Dy1 ^{iv}	2.373 (2)
С3—Н3В	0.9700	O1W—H2W	0.8462
C2—O2	1.231 (5)	O1W—H1W	0.8429
C2—O1	1.282 (5)	O2W—H3W	0.8322
C2—C1	1.496 (5)	O2W—H4W	0.8371
C1—H1A	0.9700	O3W—H6W	0.8515
C1—H1B	0.9700	O3W—H5W	0.8763
O4—Dy1—O7 ⁱ	89.53 (9)	O2—C2—O1	124.0 (4)
O4—Dy1—O5	97.72 (10)	O2—C2—C1	121.2 (4)
O7 ⁱ —Dy1—O5	150.23 (9)	O1—C2—C1	114.8 (4)
O4—Dy1—O6	88.56 (10)	N2—C1—C2	110.6 (3)
O7 ⁱ —Dy1—O6	74.80 (9)	N2—C1—H1A	109.5
O5—Dy1—O6	133.90 (9)	C2—C1—H1A	109.5
O4—Dy1—O8 ⁱⁱ	80.61 (10)	N2—C1—H1B	109.5
O7 ⁱ —Dy1—O8 ⁱⁱ	76.54 (8)	C2—C1—H1B	109.5
O5—Dy1—O8 ⁱⁱ	76.25 (9)	H1A—C1—H1B	108.1
O6—Dy1—O8 ⁱⁱ	149.38 (9)	N2—C6—C5	112.4 (3)
O4—Dy1—O2	162.25 (10)	N2—C6—H6A	109.1
O7 ⁱ —Dy1—O2	79.94 (10)	С5—С6—Н6А	109.1
O5—Dy1—O2	85.01 (10)	N2—C6—H6B	109.1
O6—Dy1—O2	102.22 (10)	С5—С6—Н6В	109.1
O8 ⁱⁱ —Dy1—O2	83.05 (9)	Н6А—С6—Н6В	107.9
O4—Dy1—N2	132.53 (9)	N1—C5—C6	112.1 (3)
O7 ⁱ —Dy1—N2	119.38 (9)	N1—C5—H5A	109.2
O5—Dy1—N2	75.81 (10)	С6—С5—Н5А	109.2
O6—Dy1—N2	66.98 (9)	N1—C5—H5B	109.2
O8 ⁱⁱ —Dy1—N2	138.99 (9)	С6—С5—Н5В	109.2
O2—Dy1—N2	65.17 (9)	Н5А—С5—Н5В	107.9
O4—Dy1—N1	65.28 (9)	C2—O2—Dy1	123.5 (3)
$O7^{i}$ —Dv1—N1	140.53 (9)	C4—O4—Dy1	125.5 (3)
O5—Dy1—N1	67.10 (9)	C2—O1—H1	109.5
06—Dy1—N1	74.70 (10)	07—C8—O5	123.1 (4)
$O8^{ii}$ —Dv1—N1	124.40 (9)	O7—C8—C7	119.0 (3)
O2—Dy1—N1	130.94 (9)	O5—C8—C7	117.8 (3)
-	× /		. /

N2—Dy1—N1	69.15 (9)	N1—C7—C8	113.4 (3)
C3—N1—C7	109.2 (3)	N1—C7—H7A	108.9
C3—N1—C5	111.5 (3)	C8—C7—H7A	108.9
C7—N1—C5	110.7 (3)	N1—C7—H7B	108.9
C3—N1—Dy1	108.2 (2)	С8—С7—Н7В	108.9
C7—N1—Dy1	107.3 (2)	Н7А—С7—Н7В	107.7
C5—N1—Dy1	109.8 (2)	C8—O5—Dy1	125.7 (2)
C1—N2—C9	109.0 (3)	O8—C10—O6	123.8 (4)
C1—N2—C6	110.6 (3)	O8—C10—C9	119.4 (3)
C9—N2—C6	109.9 (3)	O6—C10—C9	116.7 (3)
C1—N2—Dy1	109.4 (2)	N2	112.5 (3)
C9—N2—Dy1	106.7 (2)	N2—C9—H9A	109.1
C6—N2—Dy1	111.0 (2)	С10—С9—Н9А	109.1
O4—C4—O3	123.9 (4)	N2—C9—H9B	109.1
O4—C4—C3	118.5 (4)	С10—С9—Н9В	109.1
O3—C4—C3	117.6 (4)	H9A—C9—H9B	107.8
N1—C3—C4	110.9 (3)	C10—O6—Dy1	125.4 (2)
N1—C3—H3A	109.5	C8—O7—Dy1 ⁱⁱⁱ	147.0 (2)
С4—С3—Н3А	109.5	C10—O8—Dy1 ^{iv}	144.6 (2)
N1—C3—H3B	109.5	H2W—O1W—H1W	110.2
С4—С3—Н3В	109.5	H3W—O2W—H4W	111.4
НЗА—СЗ—НЗВ	108.1	H6W—O3W—H5W	106.7
	(``) +1/0 +1/0 (```)		

Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) x+1/2, y, -z+1/2; (iii) -x+1/2, y+1/2, z; (iv) x-1/2, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1…O3 ^v	0.82	1.69	2.504 (5)	172
O1W—H2W···O6 ^{vi}	0.85	2.17	2.920 (5)	148
O1W—H1W···O3 ^{vii}	0.84	2.10	2.925 (5)	165
O2W—H3W···O3W ^{viii}	0.83	2.04	2.813 (6)	154
O2W—H4W…O1W ^{ix}	0.84	2.09	2.844 (6)	150
O3W—H6W···O2 ⁱⁱⁱ	0.85	2.56	3.141 (5)	127

Symmetry codes: (v) -*x*+1/2, -*y*+1, *z*-1/2; (vi) *x*+1, *y*, *z*; (vii) -*x*+1, -*y*+1, -*z*+1; (viii) *x*+1/2, -*y*+3/2, -*z*; (ix) -*x*+2, *y*+1/2, -*z*+1/2; (iii) -*x*+1/2, *y*+1/2, *z*.

Fig. 1

Fig. 2

